Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators
نویسندگان
چکیده
Associated with a skew-symmetric linear operator on the spatial domain [a, b] we define a Dirac structure which includes the port variables on the boundary of this spatial domain. This Dirac structure is a subspace of a Hilbert space. Naturally, associated with this Dirac structure is an infinite-dimensional system. We parameterize the boundary port variables for which the C0semigroup associated with this system is contractive or unitary. Furthermore, this parameterization is used to split the boundary port variables into inputs and outputs. Similarly, we define a linear port controlled Hamiltonian system associated with the previously defined Dirac structure and a symmetric positive operator defining the energy of the system. We illustrate this theory on the example of the Timoshenko beam.
منابع مشابه
Boundary systems and self-adjoint operators on infinite metric graphs
We generalize the notion of Lagrangian subspaces to self-orthogonal subspaces with respect to a (skew-)symmetric form, thus characterizing (skew-) self-adjoint and unitary operators by means of self-orthogonal subspaces. By orthogonality preserving mappings, these characterizations can be transferred to abstract boundary value spaces of (skew-)symmetric operators. Introducing the notion of boun...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملThe Srni Lectures on Non-integrable Geometries with Torsion
This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries...
متن کاملBoundary Control Systems and the System Node
In this paper we show how to formulate a boundary control system in terms of the system node, that is, as an operator S := [ A&B C&D ] : D(S)→ [Y ] where X is the state space and Y is the output space. Here we give results which show how to find the top part of this operator and its domain in an easy way. For a class of boundary control systems, associated with a skew-symmetric differential ope...
متن کاملBoundary-value Problems for the Squared Laplace Operator
The squared Laplace operator acting on symmetric rank-two tensor fields is studied on a (flat) Riemannian manifold with smooth boundary. Symmetry of this fourth-order elliptic operator is obtained provided that such tensor fields and their first (or second) normal derivatives are set to zero at the boundary. Strong ellipticity of the resulting boundary-value problems is also proved. Mixed bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Control and Optimization
دوره 44 شماره
صفحات -
تاریخ انتشار 2005